Commutation (neurophysiology)


English Wikipedia - The Free EncyclopediaDownload this dictionary
Commutation (neurophysiology)
In neurophysiology, commutation is the process of how the brain's neural circuits exhibit non-commutativity. Physiologist Douglas B. Tweed and coworkers consider whether certain neural circuits in the brain exhibit noncommutativity and state:
In noncommutative algebra, order makes a difference to multiplication, so that . This feature is necessary for computing rotary motion, because order makes a difference to the combined effect of two rotations. It has therefore been proposed that there are non-commutative operators in the brain circuits that deal with rotations, including motor system circuits that steer the eyes, head and limbs, and sensory system circuits that handle spatial information. This idea is controversial: studies of eye and head control have revealed behaviours that are consistent with non-commutativity in the brain, but none that clearly rules out all commutative models.

See more at Wikipedia.org...


© This article uses material from Wikipedia® and is licensed under the GNU Free Documentation License and under the Creative Commons Attribution-ShareAlike License